A new type of solar cell is coming to market

A new type of solar cell is coming to market

Sometimes it takes a while for the importance of a scientific discovery to become clear. When the first perovskite, a compound of calcium, titanium and oxygen, was discovered in the Ural mountains in 1839, and named after Count Lev Perovski, a Russian mineralogist, not much happened. The name, however, has come to be used as a plural to describe a range of other compounds that share the crystal structure of the original. In 2006 interest perked up when Tsutomu Miyasaka of Toin University in Japan discovered that some perovskites are semiconductors and showed particular promise as the basis of a new type of solar cell.

In 2012 Henry Snaith of the University of Oxford, in Britain, and his colleagues found a way to make perovskite solar cells with an efficiency (measured in terms of how well a cell converts light into electric current) of just over 10%. This was such a good conversion rate that Dr Snaith immediately switched the direction of Oxford Photovoltaics, a firm he had co-founded to develop new solar materials, into making perovskites—and perovskites alone. Progress has continued, and now that firm, and also Saule Technologies, a Polish concern founded in 2014 to do similar things, are close to bringing the first commercial perovskite solar cells to market.

Today 10% is quite a modest efficiency for a perovskite cell in the coddling conditions of a laboratory. For lab cells values above 22% are now routine. That makes those cells comparable with ones made from silicon, as most of the cells in solar panels are—albeit that such silicon cells are commercial, not experimental. It did, however, take silicon cells more than 60 years to get as far as they have, and the element is probably close to its maximum practical level of efficiency. So, there may not be much more to squeeze from it, whereas perovskites could go much higher.

Perovskite cells can also be made cheaply from commonly available industrial chemicals and metals, and they can be printed onto flexible films of plastic in roll-to-roll mass-production processes. Silicon cells, by contrast, are rigid. They are made from thinly sliced wafers of extremely pure silicon in a process that requires high temperature. That makes factories designed to produce them an expensive proposition.

Racing with silicon

On the face of it, then, perovskites should already be transforming the business of solar power. But things are never that simple. First, as with many new technologies, there is a difference between what works at small scale in a laboratory and at an industrial scale in a factory. Learning how to manufacture something takes a while. Also, perovskites as materials are not without their problems—in particular, a tendency to be a bit unstable in high temperatures and susceptible to moisture, both of which can cause the cells to decompose. Such traits are unconducive to the success of a product that would be expected to last two or three decades in the open air. Researchers are beginning to solve those shortcomings by making perovskites that are more robust and waterproof.

But even if they succeed, there is a third consideration. This is that these newfangled cells will have to go up against an incumbent solar-power industry which invested $160bn in 2017 and is familiar with silicon and how to handle it.

Source: The Economist

Date: May 2018

Read the article

Tags assigned to this article:

Related Articles

Al Gore: oil companies ‘use our atmosphere as an open sewer’

Will we burn all the fossil fuels we have in order to meet the world’s demand for energy, even if

Nearly 140 countries could be powered entirely by wind, solar and water by 2050

More than 70 per cent of the countries in the world – including the UK, US, China and other major

Renewables industry starts to grapple with the geopolitical impact of shift to green energy

The International Renewable Energy Agency (IRENA) – an industry body which counts more than 150 governments as members – has