Why it’s time to dispel the myths about nuclear power

Why it’s time to dispel the myths about nuclear power

This year marks the fifth anniversary of the Fukushima disaster, and the 30th anniversary of the Chernobyl incident. Together, these constitute the two greatest nuclear accidents the world has ever seen.

Even now, widespread confusion over these disasters still blights rational discussion on energy production; too often the debate becomes needlessly acrimonious, reliant on rhetoric in lieu of facts. Yet as climate change becomes an ever-encroaching factor, we need more than ever to have a reasoned discussion on nuclear power. To this end, it’s worth dispelling some persistent myths.

The events in the Ukrainian town of Pripyat on the morning of 26 April 1986 have permanently etched the name Chernobyl, and all its connotations, into the public mind. With a dark irony, it was a poorly conducted safety experiment that was the catalyst for the worst nuclear disaster in history. The full odious sequence of events that led to the accident would constitute an entire article. In essence, however, the mixture of flawed design, disabled redundancies and a tragic disregard for experimental protocol all feature heavily in the blueprint of the disaster. The net result of this errant test was a massive steam explosion, replete with enough kick to blow the 2,000 ton reactor casting clean through the roof of the reactor building.

Despite the sheer explosive force of the eruption, what ensued was not a nuclear blast. The spectre of the cold war has left an unfortunate conflation between nuclear weapons and nuclear power, but it is important to note that they operate on very different principles. The Chernobyl explosion was instead a conventional high-pressure failure due to excess steam.

Seconds later, the remaining coolant flashed to steam and a second even greater explosion occurred, dispersing the shattered nuclear core and effectively terminating the chain reaction. This second explosion also ejected chunks of graphite moderator into the air, which caught fire, releasing radioactive fallout. It’s estimated that the second explosion released 40bn joules of energy – roughly equivalent to a staggering 10 tons of TNT.

Contrary to all safety regulations, the roof of the reactor complex had been constructed with bitumen, which proved a highly flammable agent. The burning, highly toxic graphite rods ignited at least five fires on the roof of the adjacent reactor. To compound matters further, the night shift and engineering chief squabbled over whether the reactor should be shut down. For several hours workers were in situ with minimal protection. Firefighters arrived on the scene, completely unaware of the dangers they were being exposed to. In the commotion, a helicopter tasked with dumping 5,000 metric tons of sand and neutron-absorbing boron in an effort to quench the flames collided with a crane and spiralled into the ground, killing all four of crew members immediately – a tragic event caught on camera. By 5am the fire had been brought under control, but a number of men had been exposed to high radiation levels and lacked even the most basic protection.

Source: The Guardian

Date: April 2016

Read the article


Tags assigned to this article:
climate changeenergy policynuclearrenewables

Related Articles

Which countries in the world use the most coal to generate electricity

Coal is one of the most polluting ways to generate electricity, and regions like Europe have been trying hard in

Hundreds of coal plants are still being planned worldwide, enough to cook the planet

Since 2000, countries like China, India, Indonesia, and Vietnam have been building coal-fired power plants at a torrid pace: The

US climate policies boosted economy $2.2 billion in 2013

Going green by switching to renewable sources of electricity could be good business for the US, according to new research.